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Model-based safety analysis (MBSA) offers multiple advantages for the stakeholders. The close link between a system description and 

the model that supports safety or dependability analysis allows automated model building and facilitates model reviews. Maintenance of 

the model benefits from a high-level system description with assumptions presented explicitly as an integral part of the model. Finally, 

the analysis process can utilize various properties of the system that are encapsulated in the components and their interactions. This 

paper focuses on the flexibility of analysis that does not require large remodeling or even building a new model when the question to be 

answered calls for additional or different system aspects to be considered. We show how knowledge bases built in the Figaro modeling 

language enable this flexibility on several examples from various application domains and for multiple specific system features. The 

modeling effort becomes to a large part decoupled from the analysis. An analyst building a model does not have to keep a specific 

analysis method in mind and might not even be aware of methods that will be required in the future. 
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1. Introduction 

The way in which we model a system affects the way in 

which we can perform its dependability analyses. Even 

though the system under study is the same one, the degree 

of conservatism in results differs between a fault tree 

model, a Markov chain, Petri nets or differential equations. 

The other way around, the purpose of an analysis and 

perhaps the focus on particular aspects of system behavior 

point towards a specific modeling formalism. If we have a 

description of components, their failures, behavior and 

interactions with other components (a knowledge base) 

then building a model and defining analyses become two 

orthogonal tasks. Modeling includes selecting system 

components and connecting them according to the actual 

dependencies. Defining an analysis means describing the 

properties of interest and the set of behaviors and/or 

interactions that shall be included in the analysis. As long 

as these behaviors are specified in the knowledge base, the 

model does not need to change.  

This structure of encapsulating possibly complex 

dependability relevant functioning of components and their 

interactions into knowledge bases and using these pre-

defined components in models of specific systems is used 

in some tools, such as RiskSpectrum ModelBuilder (KB3), 

with a graphical interface for modeling, complemented by 

import possibilities, and a support for various analysis 

tools. We describe the exact mechanism allowing us to 

decouple modeling from analysis and exemplify its power 

on several cases related to scenarios occurring in the 

industrial praxis. We also illustrate on some of the 

examples how different aspects of the same system can be 

captured in a single model. An analyst can afterwards 

decide which features or aspects of the real-life system 

shall be considered in the analysis and which ones can be 

screened away or abstracted by a simplifying mathematical 

description that enables using a more efficient analysis 

algorithm.  

We include the following cases: 

• A production system where productivity is as 

important as reliability. We show how stand-by 

components and different repair strategies can 

be modeled and how can they be taken into 

account in dependability calculations. 

• A spent fuel pool system of a nuclear power 

plant with a special role of repairs under a long 

mission time. We use this system also to 
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illustrate modeling of deterministic failure and 

grace times that arise from physical aspects of 

the system. 

• A thermohydraulic safety system enabling 

analyses beyond standard fault trees.  

• A system that cannot be repaired during its 

mission-time, where cold spares are essential 

for safety. 

This work relies on the MBSA modeling language Figaro 

(Bouissou et al., 1991) and the methodology based on 

knowledge bases. There are several other established 

MBSA frameworks which offer a high-level modeling 

approach for dependability studies. AltaRica (Point and 

Rauzy (1999), Arnold et al. (2000)) supports hierarchical 

modeling of components and their interaction. Models 

ultimately translate to guarded transition systems with a 

precise mathematical semantics and a number of analysis 

tools. Lipaczewski et al. (2015) gives an overview of the 

main features by a comparison to another MBSA 

framework, Safety Analysis Modeling Language (SAML) 

proposed by Güdemann and Ortmeier (2010). 

Hierarchically Performed Hazard Origin and Propagation 

Studies (Hip-HOPS) (Papadopoulos and McDermid 

(1999)) equips individual components with failure modes 

and mechanisms of their propagation. This allows for 

standard Fault Tree Analysis (Papadopoulos and Maruhn 

(2001)) and Failure Modes and Effects Analysis. But this 

formalism offers also dynamic analyses, e.g., based on 

Petri Nets (Kabir et al. (2018)). Formal Safety Analysis 

Platform (FSAP) (Bozzano and Villafiorita (2006)) utilizes 

symbolic model checking to perform safety analysis of a 

system model. This platform has been succeeded by xSAP 

(Bittner et al. (2016)) which extends it by providing 

general libraries for modeling and additional tools for 

safety analysis. 

All of these formalisms offer a high-level modeling 

approach for dependability studies. An analyst works only 

with (a graphical representation of) components on the 

level of the system description that Computer Aided 

Design (CAD) or Model Based System Engineering 

(MBSE) tools use. These tools typically lack a direct 

support for dependability analyses. For example, work of 

Flori et al. (2018) links models specified in the MBSE tool 

Capella to a description of system’s failure behavior in 

Figaro to allow for safety analysis. However, failures of 

components have to be modeled ad hoc for each 

component. There is no generic knowledge about failure 

behavior of components to rely on. 

2. Preliminaries 

This section presents basics of knowledge bases and the 

modeling language Figaro. We also briefly describe how 

knowledge bases can be used in a graphical modeling 

environment such as RiskSpectrum ModelBuilder (KB3). 

Figaro is a text-based, object-oriented general-purpose 

modeling language for dependability analyses. Its 

semantics is a timed state-transition system with both 

deterministic and stochastic transitions. The language 

offers modelers great support to abstract away from low-

level transition systems and think in terms of components 

and their interactions.  

Components can be defined as classes in a standard 

class-hierarchy used in object-oriented languages. Figaro 

uses so called occurrence and interaction rules to describe 

the behavior of a class. Occurrence rules describe 

stochastic transitions with their guards and the associated 

probability distributions. The purpose of interaction rules 

is to propagate the effects that are the immediate and 

certain consequences of a stochastic transition in the 

system. A detailed description of all features can be found 

in Bouissou et al. (2019). 

Figaro can serve as a general language to describe 

standard formalisms used in dependability studies, such as 

Fault Trees, Markov Processes, Generalized Stochastic 

Petri Nets, Digraphs and Reliability Block Diagrams. It 

can also be used to build customized modeling libraries for 

various types of systems, such as thermohydraulic, 

electric, or production systems. In Figaro libraries, classes 

may have many specific features that go beyond a 

combinatorial characterization of the failure behavior. For 

example: 

• Repairs, including complex repair strategies 

with shared resources and imperfect repairs; 

• Stand-by dependencies and multistage 

reconfiguration strategies; 

• Deterministic behavior: clocks, grace periods, 

deterministic timing of failures; 

• Production / processing / throughput 

Knowledge bases consist of component descriptions (class 

definitions in the Figaro language) and a graphical part 

that turns components into graphical icons that enable 

graphical building of system models, their linking through 

graphical links or by setting instance specific properties 

and visualization of the component state. Defining a model 

then consists in selecting correct components, placing 

them on a canvas, linking them, and setting instance 

specific data. This includes also definitions of system 

configurations – initial states, relevant failure modes, and 

success criteria. Information entered for a specific model is 

sometimes called a fact base. Each fact base requires a 

knowledge base to be able to interpret behavior of 

components and their interaction. 

Finally, we sketch the mechanism that separates 

modeling and analysis. The actual process of building a 

model does not require detailed description of system 

behavior. This is encapsulated in the knowledge base. 

Therefore, the Figaro description of components can 

include many types of behaviors. Figaro allows to separate 



 

 

Flexibility of Analysis Through Knowledge Bases     3 

 

them into different groups (called rule groups) which give 

rise to different aspects of the behavior. For example, rules 

for a component failing can be in one group. Rules for 

repairs can be in another group. The analyst builds the 

same system model irrespective of whether an analysis 

should take repairs into account or not. At the moment of 

defining an analysis, one needs to specify which rule 

groups shall be taken into consideration. 

The following sections will illustrate these concepts 

and especially the flexibility of analysis on several 

examples, showing (highly simplified) industrial systems. 

Knowledge bases for all examples are publicly available as 

a part of Visual Figaro (2021). 

3. Production System 

This section gives examples on features that can be 

utilized when modeling a system that processes or 

produces something based on the status, capabilities and 

relations between individual blocks in a plant. We 

exemplify it by a fault tolerant production system where 

production units corresponding to various stages of the 

elaboration of a product are in series, but each unit may 

contain several production blocks in parallel, in order to 

cope with possible failures without having to stop the 

whole system. Blocks can differ in their 

processing/production capacity and their reliability data.  

Let us consider the following plant structure. There are 

three units connected in series through a single production 

pipe. The first unit contains a single block that simply 

processes the input with the capacity of 100%. The next 

unit consists of four blocks in parallel. Two of them have 

capacity of 30%, while the other two ones have capacity 

40%, but the fourth block is a cold spare for the third one. 

Therefore, the maximal production capacity of this unit 

also adds up to 100%. The last unit consists of eight 

identical blocks with 15% capacity each. This exceeds the 

100% capacity, which means that the blocks do not need to 

run on their maximal nominal capacity to cover the 

demand, unless some of them fail. 

One can model this plant by the tree in Figure 1 where 

“gates” encode whether their children are connected in 

series or in parallel. The total plant production, at the top 

of the tree, is the minimum of the productions of the three 

units. Each unit produces the sum of the capacity of its 

children. One of the blocks in the second unit, denoted D2, 

is failed in the represented configuration in Figure 1. The 

red dashed line between the blocks C1 and C2 denotes the 

stand-by redundancy. 

There are different types of analyses that one could 

perform on such a system. One could specify minimal 

performance criteria such as the minimal number of blocks 

in each unit that are required so that the whole plant can 

fulfill its task. From this, one can let the tool generate a 

fault tree and obtain the unavailability of the plant by a 

standard fault tree analysis, given unavailabilities of 

individual blocks. 

 

 

 
 

Figure 1. A model for the production analysis of a sample plant 

built with the Miniplant knowledge base in RiskSpectrum 

ModelBuilder (KB3). 
 

This might give a very coarse indication about the 

effect of possible failures on the plant production, which 

might be in its turn also of a very limited value in risk-

based decision taking. One might want to analyze the 

average plant production capacity or a fraction of time in 

which the plant production drops below a certain critical 

level. For this, we need to take repairs of failed blocks into 

account.  

We could model repairs as independent from each 

other, assuming sufficient resources to perform a repair 

whenever a block fails. This can be a reasonable 

approximation in highly reliable systems. If we want to 

refine the analysis, we might want to model the fact that 

there are limited resources for repairs and they are used 

according to a pre-defined repair strategy. For instance, we 

assume that each unit has its own repair crew, which 

repairs failed blocks in the first-come first-served order. 

This is depicted by two repair crew icons in Figure 1. 

The block repairs, repair strategy and a class for a 

repair crew are specified in the knowledge base. The only 

work that is left for the model (the fact base) consists of 

specifying repair parameters, e.g. mean times to repair for 

the case of exponentially distributed repair times or 

parameters for differently distributed repair times, defining 

the repair crews and their areas of responsibility. 

Once we want to analyze the production level of a 

plant then we need to reach above the fault trees, above the 

definition of failures and their propagation through the 

system. We need to capture the state and its changes in 

time.  

In the Miniplant knowledge base, occurrence rules 

model the failures, repairs and the distributions of their 

times, while interaction rules model the bottom up 

propagation of production capacity, the switching on and 

off of C2 and the management of the first-come first-

served repair policy. The analysis of such a model can 

resort to a Monte Carlo simulation, which offers full 

flexibility also when it comes to the choice of probabilistic 

distributions. 
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The analysis is again steered by the parameters that we 

select when we start it. The underlying model stays the 

same. We can select rule groups or attributes in the 

knowledge base that determine if RiskSpectrum 

ModelBuilder (KB3) generates a fault tree for pre-defined 

static success criteria or if it generates a stochastic 

transition system whose simulation yields the mean 

production of each subsystem and the whole system on a 

given time period (Bouissou et al. 2004). For all repair 

strategies implemented in the knowledge base, it suffices 

again to select the appropriate rule groups or set the value 

of an attribute to select the repair strategy to be considered 

in the analysis. 

4. Thermohydraulic Systems 

Modeling thermohydraulic systems is a large part of 

Probabilistic Safety Assessment work for, e.g., Nuclear 

Power Plants. The scope, resolution and the regulatory 

requirements on regular updates of such studies pose a 

severe challenge for structuring the model. First, the 

relation between the actual system and the resulting fault 

trees must not be obscured. Secondly, assumptions made 

while building the model have to remain transparent for 

reviewing and future updates.  

A well-established approach to cope with all these 

challenges is to convert Piping and Instrumentation 

Diagrams (P&IDs) automatically to a model based on a 

corresponding knowledge base, for instance from a CAD 

tool. The visual part of the system description in RSMB 

naturally matches the system topology in the graphical part 

of a P&ID. By this, one can preserve the relation between 

the system structure and a (high level) system safety 

model. Safety analysts still need to input all reliability 

information which is not present in the P&IDs. A 

knowledge base tailored to a specific plant can simplify 

this work as a large portion of reliability data can be pre-

defined dependent on the component types. The rest needs 

to be input separately either by manual updates or by an 

import function. Figure 2 contains a model of a sample 

cooling system. 

For a reliability analysis, one needs to specify top 

failures and relevant plant configurations. The tool then 

automatically generates fault trees for the analysis, which 

can be solved by a fault tree/event tree analysis tool. There 

is a direct import function from RiskSpectrum 

ModelBuilder (KB3) to RiskSpectrum PSA, where fault 

trees can be linked to event trees. The event tree/fault tree 

solver then performs an analysis of relevant sequences or 

consequences. Results can be evaluated by inspection of 

minimal cut sets or by built-in importance, sensitivity and 

uncertainty analysis. 

Automated fault tree generation in RiskSpectrum 

ModelBuilder (KB3) ensures a uniform structure of fault 

trees independent of individual safety engineers building 

the model. Also, all updates to the model are performed on 

the high-level representation in RiskSpectrum 

ModelBuilder (KB3) and again propagated to fault trees in 

a uniform way through the automatic fault tree generation. 

Figure 3 shows an automatically generated fault tree for 

one of the trains of the component cooling system from 

Figure 2. 

 

 
 
Figure 2. A model of a sample Component Cooling Water system 

in RiskSpectrum ModelBuilder (KB3) built with a 

thermohydraulic knowledge base. 

 

 

 
 
Figure 3. An automatically generated fault tree for Train 1 of the 

Component Cooling Water system from Figure 2. 
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Both options have their pros and cons for the model 

building and mostly for the model quality assurance. The 

former does not require ad-hoc changes of failure 

definitions by modelers, but it can lead to increasingly 

complex knowledge bases. The latter requires manual 

modeling of special cases by so called Manual Rules. This 

makes it easier for a modeler or reviewer to understand 

where and how these special cases are covered. On the 

other hand, it is easier to forget a manual rule at some 

place in the model. In both cases, it is an algorithm that 

performs most of the repetitive work that an engineer 

would have to do when drawing all fault trees manually. 

This eliminates a large portion of error-prone activities and 

leaves more time to focus on quality assurance for special 

cases. Moreover, there are additional possibilities to 

validate and trouble-shoot a model. 

Even though the size and complexity of large-scale 

PSA models poses tremendous challenges to alternative 

analysis methods, one can use them on a smaller scale to 

validate parts of the model. The simplest method suitable 

for thermohydraulic systems is an interactive simulation 

(Figure 4) which allows users to explore combinations of 

events and inspect their effect on the system. Provided that 

a visualization of the system state is pre-defined in the 

knowledge base, starting the analysis via interactive 

simulation requires only to select the corresponding rule 

group and possibly to define an initial state.  

 

 
 

Figure 4. A snapshot of an interactive simulation of the 

Component Cooling Water system from Figure 2 that shows the 

effect of a failure of the pump CCW_MP2 on the flow. 

 

An example knowledge base for thermohydraulic 

systems that contains both fault tree generation and 

interactive simulation is publicly available as a part of 

Visual Figaro (2021). 

5. Spent Fuel Pool 

We describe a simplified cooling system of a Spent Fuel 

Pool of a nuclear power plant Olsson (2018) in this 

section. Even though the model itself utilizes standard 

thermohydraulic components, it is not only another 

illustration of the features described in the previous 

section. A definition of safe end states for accident 

scenarios of a Spent Fuel Pool requires significantly longer 

mission times compared to a standard Probabilistic Safety 

Assessment (PSA). Therefore, the features that we want to 

highlight here, especially the ability to select between an 

analysis with repairs considered or a standard non-

repairable fault tree analysis, gain on their importance. 

Moreover, we have a possibility to specify a grace delay 

due to the thermal inertia of the water in the pool and 

deterministic failures of equipment like exhaustion of 

batteries or tanks.  

The cooling function consists of a primary cooling 

system that cools the spent fuel pool water by two 

redundant heat exchangers. If this system fails, then there 

is a possibility to feed water from the reactor water storage 

into the fuel pool (“feed and bleed” mode). A scheme 

created in RiskSpectrum ModelBuilder (KB3) in Figure 5 

and Figure 6 shows the components of these systems. 

 

 
Figure 5. The main cooling system of the Spent Fuel Pool. 

 

The most straightforward way of analyzing reliability 

of thermohydraulic systems in the nuclear domain is the 

(static) fault tree analysis. Here, we assume that the safety 

systems can bring the plant into a safe state within a 

mission time estimated by an analyst. This model can then 

be automatically converted to fault trees and analyzed by a 

fault tree analysis tool.  

 

 
Figure 6. The feedwater system of the Spent Fuel Pool. 

 

As mentioned above, the case of the Spent Fuel Pool 

requires prolonged mission times compared to a standard 

PSA. On the other hand, when we want to analyze accident 

durations of more days or weeks, the results will become 
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skew any safety insights obtained from the importance or 
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sensitivity analysis and might also make it more difficult 

to achieve regulatory requirements. 

In this case, we assume the following model of repairs 

– each component is repaired independently of other ones 

and the repair times are distributed exponentially. In other 

words, each component where we want to consider repairs 

has a mean time to repair assigned. The possibility to 

repair components and the actual repair mechanism can be 

already pre-defined in the knowledge base. This means 

that the graphical representation of the model is the same 

for both the standard fault tree analysis and the analysis 

taking repairs into account. The only part that an analyst 

needs to update in the model fact base to enable an 

analysis with repairs are component repair rates if (just 

like for failure rates) they differ from the default values 

pre-defined in the knowledge base.  

The choice between an analysis with repairs or without 

taking repairs into account can be done by setting a 

variable in the system, illustrated by a dialog from 

RiskSpectrum ModelBuilder (KB3) in Figure 7, or 

selecting the correct rule group. In this use case, the failure 

behavior can be captured by fault trees with repairable 

components. This makes it suitable for an efficient 

analysis method called I&AB developed by Bouissou and 

Hernu (2016), Bouissou (2018), and whose 

implementation in RiskSpectrum PSA has been evaluated 

on full-scale PSA studies in Bäckström et al. (2018).  

Generating a fault tree from a fact base (a specific 

model) and a knowledge base (generic description of 

component behavior and interactions) relies on the concept 

of failure models which ultimately define basic events. 

The selection of the rule group for repairable or non-

repairable systems in our example determines whether the 

failure of individual components is modeled by failure 

models corresponding to the mission time reliability model 

or to the model of a component that can be repaired under 

the accident duration. Having a model with repair rates, it 

takes no additional effort to run an analysis either with or 

without repairs.  

 

 
 

Figure 7. One possibility to tell whether the system shall be 

analyzed as repairable can be to set the attribute “repairable” of 

the object “system”. This is all pre-defined in the knowledge 

base. 

 

There are two additional features that occur in the spent 

fuel pool accident scenario and which are difficult to 

capture in a standard fault tree analysis. The first one 

stems from the fact that a failure to cool the pool leads to 

heating the water until it starts to boil. If the cooling 

system is repaired before this happens then we can avoid 

the undesired consequence. This gives us an additional 

fixed time period to repair the cooling system and restore 

its function – so called grace time. 

This fact can be modeled, for instance, by a component 

added to the plant scheme and connected to the output of 

the cooling system. Again, depending on whether we 

consider repairs or not in the analysis, this will be used or 

ignored in the analysis. If we abstract away from the grace 

time then we risk overly conservative results that decrease 

usability of the safety analysis. 

The second feature is typically a limited capacity of a 

component used in a safety system that gets depleted 

withing a fixed, constant time – so called deterministic 

failure. This can occur in many situations, such as batteries 

powering a safety system or, as in this case, a back-up 

water reservoir that can supply a limited amount of 

coolant. The water tank of the back-up cooling system will 

be depleted after a fixed time. This will cause the back-up 

cooling system to fail, irrespective of the failure of the 

pump.  

This is again a failure mode that can be pre-

programmed in the knowledge base. An analyst needs only 

to specify the fixed failure time for the water tank. This 

feature cannot be considered in a standard fault tree 

analysis, but for instance the I&AB method can use it (in 

an approximative way). Therefore, once the model is 

completed, it is up to the analyst to select which features 

should be considered in the analysis. This choice does not 

involve any modeling effort. One simply selects which 

features shall be included in the analyzed model. 

This choice naturally influences the computational cost 

of the analysis. In a general case, including repairs would 

require transient analysis of the underlying Markov 

process. Approximations of the I&AB method avoid the 

state space explosion and yield calculation times 

comparable to those of a static fault tree analysis 

(Bouissou et al. (2020)). 

6. Non-Repairable Mission System 

Previous sections illustrated flexibility of analysis on 

systems where accounting for repairs increases precision 

of analysis. Here we explore systems that are non-

repairable by design, such as aerospace systems on a 

mission. One of the techniques to increase reliability of 

these systems is to add cold stand-by redundancies.  

Typical probabilistic analyses of such systems rely on 

fault trees. However, fault trees can hardly model phased 

mission systems, and can be overly conservative when it 

comes to modeling cold redundancies.  

Here is a simple example: an airplane with an engine 

and propeller on each wing (Fig. 8) needs the two engines 

to work at full power during take-off and beginning of 

ascent. After, say, five minutes of ascent, it can fly with 

only one engine. The fuel is stored in the wings. Normally, 

each engine is supplied by the tank situated on the same 

wing. But in case of fuel shortage (because of a human 

error in the filling procedure, or a leak), the pilot can 

reconfigure the fuel circuits to supply both engines by a 

single tank. This reconfiguration can fail. The failure rate 

associated to tanks failures is supposed to be higher in the 
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ascent phase than in the flight phase: most failures are due 

to events that happened before or during take-off.  

   

 
Figure 8. Twin-engine airplane 

 

Even for this simple example, fault tree analysis is not 

a usable method. The minimal requirements and failure 

rates differ between the two phases, which means that two 

fault trees would be needed. But they cannot be treated 

independently. A correct probability assessment must take 

into account the dependency between the phases. If a tank 

is emptied during ascent, this must be remembered to 

initialize the model of the flight phase.  

A natural modeling formalism for this case are Boolean 

logic Driven Markov Processes (BDMPs) by Bouissou and 

Bon (2003). It extends the fault tree formalism by carefully 

selected features that, on one hand, make modeling very 

close to well-known fault trees, allow the analysis to select 

the most efficient method given the features used, but 

cover a large set of dynamic features on the other hand. In 

fact, examples from previous sections could be also 

modeled as BDMPs.  

The prominent BDMP feature used in this section is a 

trigger. It expresses cold stand-by dependencies in the 

model. The secondary back-up system is started only when 

the primary system fails. If failures of both systems are 

modeled by gates in a BDMP then we say that the gate for 

the primary system triggers the gate of the secondary 

system and depict it by a dashed red line. 

The BDMP shown in Figure 9 and commented 

hereafter is a straightforward solution to this modeling 

problem. If the length of phases is represented as 

exponentially distributed, the model is Markovian and it 

can be processed with very quick and precise Markov 

analysis tools. In order to take into account phases with a 

fixed time, the only change to do in the model is an option 

in the clocks representing the phases. But then, a Monte 

Carlo simulation is needed to solve the model.  

The clocks represent phases. Initially the "ascent" 

phase is active (considered as true in the logical structure), 

and thanks to the trigger going from this phase to the 

"flight" phase, when the first phase ends, the second one 

immediately starts. The two lower triggers are there to 

trigger on demand failures that can happen when a 

reconfiguration of the fuel path is needed. The leaves 

"tank1_empty" and "tank2_empty" are of the type SF 

(standby failure); they have a higher failure rate as long as 

the "ascent" phase is active, thanks to the triggers coming 

from the "ascent" phase. Hence, this BDMP accurately 

represents all the hypotheses on the airplane mission. 

 

 
 

Figure 9. A BDMP corresponding to the safety analysis case of 

an airplane mission. 

 

The analyst can flexibly select between a standard fault 

tree analysis of this model (e.g., for a qualitative 

evaluation), a Markovian analysis which approximates the 

fixed mission times by an exponential distribution, or a 

Monte Carlo simulation of the complete system model. 

The model itself does not have to be updated for these 

analyses. The analyst chooses corresponding rule groups at 

the moment of defining or starting the analysis. 

As in the Spent Fuel Pool case, also here will the 

choice of modeling features influence calculation costs. 

Efficiency of the Markovian analysis will substantially 

depend on selected approximations. A transient analysis of 

the underlying model might not scale beyond ca 300 basic 

events. Applicability of approximate methods depends on 

the model characteristics, such as reliability of the system 

(low failure rates, high repair rates). For certain classes of 

systems, one can hope that results sufficiently close to the 

exact values might be obtained even for larger models. 

Monte Carlo simulations are most flexible as they do not 

restrict the distributions of time intervals between events. 

The drawback might be longer simulation times, especially 

for reliable systems with rare events. 

7. Conclusions 

This paper illustrates the flexibility that a system model 

based on a Figaro knowledge base gives us for its 

dependability analyses. Knowledge bases can 

simultaneously capture multiple system features, such as 

repairs including complex repair strategies, stand-by 

dependencies, deterministic system development, 

production levels, and mission phases. An analyst who 
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enters the model on the level of a system description does 

not have to keep a certain type of analysis in mind. Only 

when a system is defined, the analyst selects which of the 

model features shall be considered by the analysis. This 

also determines the analysis tools that have the capability 

to produce required results. 
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