

Proceedings of the 31th European Safety and Reliability Conference

Edited by Bruno Castanier, Marko Cepin, David Bigaud and Christophe Berenguer

Copyright ©2021 by ESREL2021 Organizers. Published by Research Publishing, Singapore

ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0 esrel2021-paper

Flexibility of Analysis Through Knowledge Bases

Ola Bäckström

Lloyd’s Register, Sweden. E-mail: Ola.Backstrom@lr.org

Marc Bouissou

EDF Research, France. E-mail: Marc.Bouissou@edf.fr

Pavel Krcal

Lloyd’s Register, Sweden. E-mail: Pavel.Krcal@lr.org

Pengbo Wang

Lloyd’s Register, Sweden. E-mail: Pengbo.Wang@lr.org

Model-based safety analysis (MBSA) offers multiple advantages for the stakeholders. The close link between a system description and

the model that supports safety or dependability analysis allows automated model building and facilitates model reviews. Maintenance of

the model benefits from a high-level system description with assumptions presented explicitly as an integral part of the model. Finally,

the analysis process can utilize various properties of the system that are encapsulated in the components and their interactions. This

paper focuses on the flexibility of analysis that does not require large remodeling or even building a new model when the question to be

answered calls for additional or different system aspects to be considered. We show how knowledge bases built in the Figaro modeling

language enable this flexibility on several examples from various application domains and for multiple specific system features. The

modeling effort becomes to a large part decoupled from the analysis. An analyst building a model does not have to keep a specific

analysis method in mind and might not even be aware of methods that will be required in the future.

Keywords: Knowledge base, High-level modeling, Figaro, Automated model generation, MBSA.

1. Introduction

The way in which we model a system affects the way in

which we can perform its dependability analyses. Even

though the system under study is the same one, the degree

of conservatism in results differs between a fault tree

model, a Markov chain, Petri nets or differential equations.

The other way around, the purpose of an analysis and

perhaps the focus on particular aspects of system behavior

point towards a specific modeling formalism. If we have a

description of components, their failures, behavior and

interactions with other components (a knowledge base)

then building a model and defining analyses become two

orthogonal tasks. Modeling includes selecting system

components and connecting them according to the actual

dependencies. Defining an analysis means describing the

properties of interest and the set of behaviors and/or

interactions that shall be included in the analysis. As long

as these behaviors are specified in the knowledge base, the

model does not need to change.

This structure of encapsulating possibly complex

dependability relevant functioning of components and their

interactions into knowledge bases and using these pre-

defined components in models of specific systems is used

in some tools, such as RiskSpectrum ModelBuilder (KB3),

with a graphical interface for modeling, complemented by

import possibilities, and a support for various analysis

tools. We describe the exact mechanism allowing us to

decouple modeling from analysis and exemplify its power

on several cases related to scenarios occurring in the

industrial praxis. We also illustrate on some of the

examples how different aspects of the same system can be

captured in a single model. An analyst can afterwards

decide which features or aspects of the real-life system

shall be considered in the analysis and which ones can be

screened away or abstracted by a simplifying mathematical

description that enables using a more efficient analysis

algorithm.

We include the following cases:

• A production system where productivity is as

important as reliability. We show how stand-by

components and different repair strategies can

be modeled and how can they be taken into

account in dependability calculations.

• A spent fuel pool system of a nuclear power

plant with a special role of repairs under a long

mission time. We use this system also to

2 Ola Bäckström and Marc Bouissou and Pavel Krcal and Pengbo Wang

illustrate modeling of deterministic failure and

grace times that arise from physical aspects of

the system.

• A thermohydraulic safety system enabling

analyses beyond standard fault trees.

• A system that cannot be repaired during its

mission-time, where cold spares are essential

for safety.

This work relies on the MBSA modeling language Figaro

(Bouissou et al., 1991) and the methodology based on

knowledge bases. There are several other established

MBSA frameworks which offer a high-level modeling

approach for dependability studies. AltaRica (Point and

Rauzy (1999), Arnold et al. (2000)) supports hierarchical

modeling of components and their interaction. Models

ultimately translate to guarded transition systems with a

precise mathematical semantics and a number of analysis

tools. Lipaczewski et al. (2015) gives an overview of the

main features by a comparison to another MBSA

framework, Safety Analysis Modeling Language (SAML)

proposed by Güdemann and Ortmeier (2010).

Hierarchically Performed Hazard Origin and Propagation

Studies (Hip-HOPS) (Papadopoulos and McDermid

(1999)) equips individual components with failure modes

and mechanisms of their propagation. This allows for

standard Fault Tree Analysis (Papadopoulos and Maruhn

(2001)) and Failure Modes and Effects Analysis. But this

formalism offers also dynamic analyses, e.g., based on

Petri Nets (Kabir et al. (2018)). Formal Safety Analysis

Platform (FSAP) (Bozzano and Villafiorita (2006)) utilizes

symbolic model checking to perform safety analysis of a

system model. This platform has been succeeded by xSAP

(Bittner et al. (2016)) which extends it by providing

general libraries for modeling and additional tools for

safety analysis.

All of these formalisms offer a high-level modeling

approach for dependability studies. An analyst works only

with (a graphical representation of) components on the

level of the system description that Computer Aided

Design (CAD) or Model Based System Engineering

(MBSE) tools use. These tools typically lack a direct

support for dependability analyses. For example, work of

Flori et al. (2018) links models specified in the MBSE tool

Capella to a description of system’s failure behavior in

Figaro to allow for safety analysis. However, failures of

components have to be modeled ad hoc for each

component. There is no generic knowledge about failure

behavior of components to rely on.

2. Preliminaries

This section presents basics of knowledge bases and the

modeling language Figaro. We also briefly describe how

knowledge bases can be used in a graphical modeling

environment such as RiskSpectrum ModelBuilder (KB3).

Figaro is a text-based, object-oriented general-purpose

modeling language for dependability analyses. Its

semantics is a timed state-transition system with both

deterministic and stochastic transitions. The language

offers modelers great support to abstract away from low-

level transition systems and think in terms of components

and their interactions.

Components can be defined as classes in a standard

class-hierarchy used in object-oriented languages. Figaro

uses so called occurrence and interaction rules to describe

the behavior of a class. Occurrence rules describe

stochastic transitions with their guards and the associated

probability distributions. The purpose of interaction rules

is to propagate the effects that are the immediate and

certain consequences of a stochastic transition in the

system. A detailed description of all features can be found

in Bouissou et al. (2019).

Figaro can serve as a general language to describe

standard formalisms used in dependability studies, such as

Fault Trees, Markov Processes, Generalized Stochastic

Petri Nets, Digraphs and Reliability Block Diagrams. It

can also be used to build customized modeling libraries for

various types of systems, such as thermohydraulic,

electric, or production systems. In Figaro libraries, classes

may have many specific features that go beyond a

combinatorial characterization of the failure behavior. For

example:

• Repairs, including complex repair strategies

with shared resources and imperfect repairs;

• Stand-by dependencies and multistage

reconfiguration strategies;

• Deterministic behavior: clocks, grace periods,

deterministic timing of failures;

• Production / processing / throughput

Knowledge bases consist of component descriptions (class

definitions in the Figaro language) and a graphical part

that turns components into graphical icons that enable

graphical building of system models, their linking through

graphical links or by setting instance specific properties

and visualization of the component state. Defining a model

then consists in selecting correct components, placing

them on a canvas, linking them, and setting instance

specific data. This includes also definitions of system

configurations – initial states, relevant failure modes, and

success criteria. Information entered for a specific model is

sometimes called a fact base. Each fact base requires a

knowledge base to be able to interpret behavior of

components and their interaction.

Finally, we sketch the mechanism that separates

modeling and analysis. The actual process of building a

model does not require detailed description of system

behavior. This is encapsulated in the knowledge base.

Therefore, the Figaro description of components can

include many types of behaviors. Figaro allows to separate

Flexibility of Analysis Through Knowledge Bases 3

them into different groups (called rule groups) which give

rise to different aspects of the behavior. For example, rules

for a component failing can be in one group. Rules for

repairs can be in another group. The analyst builds the

same system model irrespective of whether an analysis

should take repairs into account or not. At the moment of

defining an analysis, one needs to specify which rule

groups shall be taken into consideration.

The following sections will illustrate these concepts

and especially the flexibility of analysis on several

examples, showing (highly simplified) industrial systems.

Knowledge bases for all examples are publicly available as

a part of Visual Figaro (2021).

3. Production System

This section gives examples on features that can be

utilized when modeling a system that processes or

produces something based on the status, capabilities and

relations between individual blocks in a plant. We

exemplify it by a fault tolerant production system where

production units corresponding to various stages of the

elaboration of a product are in series, but each unit may

contain several production blocks in parallel, in order to

cope with possible failures without having to stop the

whole system. Blocks can differ in their

processing/production capacity and their reliability data.

Let us consider the following plant structure. There are

three units connected in series through a single production

pipe. The first unit contains a single block that simply

processes the input with the capacity of 100%. The next

unit consists of four blocks in parallel. Two of them have

capacity of 30%, while the other two ones have capacity

40%, but the fourth block is a cold spare for the third one.

Therefore, the maximal production capacity of this unit

also adds up to 100%. The last unit consists of eight

identical blocks with 15% capacity each. This exceeds the

100% capacity, which means that the blocks do not need to

run on their maximal nominal capacity to cover the

demand, unless some of them fail.

One can model this plant by the tree in Figure 1 where

“gates” encode whether their children are connected in

series or in parallel. The total plant production, at the top

of the tree, is the minimum of the productions of the three

units. Each unit produces the sum of the capacity of its

children. One of the blocks in the second unit, denoted D2,

is failed in the represented configuration in Figure 1. The

red dashed line between the blocks C1 and C2 denotes the

stand-by redundancy.

There are different types of analyses that one could

perform on such a system. One could specify minimal

performance criteria such as the minimal number of blocks

in each unit that are required so that the whole plant can

fulfill its task. From this, one can let the tool generate a

fault tree and obtain the unavailability of the plant by a

standard fault tree analysis, given unavailabilities of

individual blocks.

Figure 1. A model for the production analysis of a sample plant

built with the Miniplant knowledge base in RiskSpectrum

ModelBuilder (KB3).

This might give a very coarse indication about the

effect of possible failures on the plant production, which

might be in its turn also of a very limited value in risk-

based decision taking. One might want to analyze the

average plant production capacity or a fraction of time in

which the plant production drops below a certain critical

level. For this, we need to take repairs of failed blocks into

account.

We could model repairs as independent from each

other, assuming sufficient resources to perform a repair

whenever a block fails. This can be a reasonable

approximation in highly reliable systems. If we want to

refine the analysis, we might want to model the fact that

there are limited resources for repairs and they are used

according to a pre-defined repair strategy. For instance, we

assume that each unit has its own repair crew, which

repairs failed blocks in the first-come first-served order.

This is depicted by two repair crew icons in Figure 1.

The block repairs, repair strategy and a class for a

repair crew are specified in the knowledge base. The only

work that is left for the model (the fact base) consists of

specifying repair parameters, e.g. mean times to repair for

the case of exponentially distributed repair times or

parameters for differently distributed repair times, defining

the repair crews and their areas of responsibility.

Once we want to analyze the production level of a

plant then we need to reach above the fault trees, above the

definition of failures and their propagation through the

system. We need to capture the state and its changes in

time.

In the Miniplant knowledge base, occurrence rules

model the failures, repairs and the distributions of their

times, while interaction rules model the bottom up

propagation of production capacity, the switching on and

off of C2 and the management of the first-come first-

served repair policy. The analysis of such a model can

resort to a Monte Carlo simulation, which offers full

flexibility also when it comes to the choice of probabilistic

distributions.

D1

C = 30

E3

C = 15

add_2

C = 100

rep_EI

cpt_A

C = 100

E8

C = 15

D2

C = 0

E5

C = 15

C1

C = 40 E4

C = 15

E6

C = 15

E2

C = 15

C2

C = 0

MINIPLANT

C = 70

E1

C = 15

rep_CD

add_1

C = 70

E7

C = 15

E6

C1

E2

cpt_A

rep_CD

add_1

D1

rep_EI

D2

E8

E3

C2

E4

E7

MINIPLANT

E5

add_2

E1

4 Ola Bäckström and Marc Bouissou and Pavel Krcal and Pengbo Wang

The analysis is again steered by the parameters that we

select when we start it. The underlying model stays the

same. We can select rule groups or attributes in the

knowledge base that determine if RiskSpectrum

ModelBuilder (KB3) generates a fault tree for pre-defined

static success criteria or if it generates a stochastic

transition system whose simulation yields the mean

production of each subsystem and the whole system on a

given time period (Bouissou et al. 2004). For all repair

strategies implemented in the knowledge base, it suffices

again to select the appropriate rule groups or set the value

of an attribute to select the repair strategy to be considered

in the analysis.

4. Thermohydraulic Systems

Modeling thermohydraulic systems is a large part of

Probabilistic Safety Assessment work for, e.g., Nuclear

Power Plants. The scope, resolution and the regulatory

requirements on regular updates of such studies pose a

severe challenge for structuring the model. First, the

relation between the actual system and the resulting fault

trees must not be obscured. Secondly, assumptions made

while building the model have to remain transparent for

reviewing and future updates.

A well-established approach to cope with all these

challenges is to convert Piping and Instrumentation

Diagrams (P&IDs) automatically to a model based on a

corresponding knowledge base, for instance from a CAD

tool. The visual part of the system description in RSMB

naturally matches the system topology in the graphical part

of a P&ID. By this, one can preserve the relation between

the system structure and a (high level) system safety

model. Safety analysts still need to input all reliability

information which is not present in the P&IDs. A

knowledge base tailored to a specific plant can simplify

this work as a large portion of reliability data can be pre-

defined dependent on the component types. The rest needs

to be input separately either by manual updates or by an

import function. Figure 2 contains a model of a sample

cooling system.

For a reliability analysis, one needs to specify top

failures and relevant plant configurations. The tool then

automatically generates fault trees for the analysis, which

can be solved by a fault tree/event tree analysis tool. There

is a direct import function from RiskSpectrum

ModelBuilder (KB3) to RiskSpectrum PSA, where fault

trees can be linked to event trees. The event tree/fault tree

solver then performs an analysis of relevant sequences or

consequences. Results can be evaluated by inspection of

minimal cut sets or by built-in importance, sensitivity and

uncertainty analysis.

Automated fault tree generation in RiskSpectrum

ModelBuilder (KB3) ensures a uniform structure of fault

trees independent of individual safety engineers building

the model. Also, all updates to the model are performed on

the high-level representation in RiskSpectrum

ModelBuilder (KB3) and again propagated to fault trees in

a uniform way through the automatic fault tree generation.

Figure 3 shows an automatically generated fault tree for

one of the trains of the component cooling system from

Figure 2.

Figure 2. A model of a sample Component Cooling Water system

in RiskSpectrum ModelBuilder (KB3) built with a

thermohydraulic knowledge base.

Figure 3. An automatically generated fault tree for Train 1 of the

Component Cooling Water system from Figure 2.

SWS1 is
cooling HE1

SWS2 is
cooling HE2

S

GS_CCWS

CCWS_T1

CCWS_T2

CCW_T1_HE1

CCW_T2_HE1

!

CCWS_T1_FAIL

!

CCWS_T2_FAIL

380

CCW_MP1

380

CCW_MP2

MB-ECC-S343
MB-EFW-S339

Component Cooling
Water System Train 1
fails

MB-CCW-T1-F

Obstruction of pump
CCW_MP1

MB-CCW-S230

Obstruction in Operation
of CCW_MP1

MB-CCW-S267

AC Power System Bus 1
fails

ACP_1

ACP_1

Component Cooling
Water System pump
stops operating

CCW-MP1-FO

Component Cooling
Water System pump fails
to start

CCW-MP1-FD

Loss of heat exchanging
function of
CCW_T1_HE1

MB-CCW-S203

Service Water System
Train 1 fails

MB-SWS-T1-F

MB-SWS-T1-F

Failure in operation of
heat_exchanger
CCW_T1_HE1

CCW-T1-HE1-FO

Flexibility of Analysis Through Knowledge Bases 5

Both options have their pros and cons for the model

building and mostly for the model quality assurance. The

former does not require ad-hoc changes of failure

definitions by modelers, but it can lead to increasingly

complex knowledge bases. The latter requires manual

modeling of special cases by so called Manual Rules. This

makes it easier for a modeler or reviewer to understand

where and how these special cases are covered. On the

other hand, it is easier to forget a manual rule at some

place in the model. In both cases, it is an algorithm that

performs most of the repetitive work that an engineer

would have to do when drawing all fault trees manually.

This eliminates a large portion of error-prone activities and

leaves more time to focus on quality assurance for special

cases. Moreover, there are additional possibilities to

validate and trouble-shoot a model.

Even though the size and complexity of large-scale

PSA models poses tremendous challenges to alternative

analysis methods, one can use them on a smaller scale to

validate parts of the model. The simplest method suitable

for thermohydraulic systems is an interactive simulation

(Figure 4) which allows users to explore combinations of

events and inspect their effect on the system. Provided that

a visualization of the system state is pre-defined in the

knowledge base, starting the analysis via interactive

simulation requires only to select the corresponding rule

group and possibly to define an initial state.

Figure 4. A snapshot of an interactive simulation of the

Component Cooling Water system from Figure 2 that shows the

effect of a failure of the pump CCW_MP2 on the flow.

An example knowledge base for thermohydraulic

systems that contains both fault tree generation and

interactive simulation is publicly available as a part of

Visual Figaro (2021).

5. Spent Fuel Pool

We describe a simplified cooling system of a Spent Fuel

Pool of a nuclear power plant Olsson (2018) in this

section. Even though the model itself utilizes standard

thermohydraulic components, it is not only another

illustration of the features described in the previous

section. A definition of safe end states for accident

scenarios of a Spent Fuel Pool requires significantly longer

mission times compared to a standard Probabilistic Safety

Assessment (PSA). Therefore, the features that we want to

highlight here, especially the ability to select between an

analysis with repairs considered or a standard non-

repairable fault tree analysis, gain on their importance.

Moreover, we have a possibility to specify a grace delay

due to the thermal inertia of the water in the pool and

deterministic failures of equipment like exhaustion of

batteries or tanks.

The cooling function consists of a primary cooling

system that cools the spent fuel pool water by two

redundant heat exchangers. If this system fails, then there

is a possibility to feed water from the reactor water storage

into the fuel pool (“feed and bleed” mode). A scheme

created in RiskSpectrum ModelBuilder (KB3) in Figure 5

and Figure 6 shows the components of these systems.

Figure 5. The main cooling system of the Spent Fuel Pool.

The most straightforward way of analyzing reliability

of thermohydraulic systems in the nuclear domain is the

(static) fault tree analysis. Here, we assume that the safety

systems can bring the plant into a safe state within a

mission time estimated by an analyst. This model can then

be automatically converted to fault trees and analyzed by a

fault tree analysis tool.

Figure 6. The feedwater system of the Spent Fuel Pool.

As mentioned above, the case of the Spent Fuel Pool

requires prolonged mission times compared to a standard

PSA. On the other hand, when we want to analyze accident

durations of more days or weeks, the results will become

overly conservative for non-repairable systems. This might

skew any safety insights obtained from the importance or

SFP

N_1

N2

node_3

380

SFP_1

380

SFP_2

SFHX_1

SFHX_2

380

CCP2

380

CCP1

RWT_1

380

RWP_1

N_4

6 Ola Bäckström and Marc Bouissou and Pavel Krcal and Pengbo Wang

sensitivity analysis and might also make it more difficult

to achieve regulatory requirements.

In this case, we assume the following model of repairs

– each component is repaired independently of other ones

and the repair times are distributed exponentially. In other

words, each component where we want to consider repairs

has a mean time to repair assigned. The possibility to

repair components and the actual repair mechanism can be

already pre-defined in the knowledge base. This means

that the graphical representation of the model is the same

for both the standard fault tree analysis and the analysis

taking repairs into account. The only part that an analyst

needs to update in the model fact base to enable an

analysis with repairs are component repair rates if (just

like for failure rates) they differ from the default values

pre-defined in the knowledge base.

The choice between an analysis with repairs or without

taking repairs into account can be done by setting a

variable in the system, illustrated by a dialog from

RiskSpectrum ModelBuilder (KB3) in Figure 7, or

selecting the correct rule group. In this use case, the failure

behavior can be captured by fault trees with repairable

components. This makes it suitable for an efficient

analysis method called I&AB developed by Bouissou and

Hernu (2016), Bouissou (2018), and whose

implementation in RiskSpectrum PSA has been evaluated

on full-scale PSA studies in Bäckström et al. (2018).

Generating a fault tree from a fact base (a specific

model) and a knowledge base (generic description of

component behavior and interactions) relies on the concept

of failure models which ultimately define basic events.

The selection of the rule group for repairable or non-

repairable systems in our example determines whether the

failure of individual components is modeled by failure

models corresponding to the mission time reliability model

or to the model of a component that can be repaired under

the accident duration. Having a model with repair rates, it

takes no additional effort to run an analysis either with or

without repairs.

Figure 7. One possibility to tell whether the system shall be

analyzed as repairable can be to set the attribute “repairable” of

the object “system”. This is all pre-defined in the knowledge

base.

There are two additional features that occur in the spent

fuel pool accident scenario and which are difficult to

capture in a standard fault tree analysis. The first one

stems from the fact that a failure to cool the pool leads to

heating the water until it starts to boil. If the cooling

system is repaired before this happens then we can avoid

the undesired consequence. This gives us an additional

fixed time period to repair the cooling system and restore

its function – so called grace time.

This fact can be modeled, for instance, by a component

added to the plant scheme and connected to the output of

the cooling system. Again, depending on whether we

consider repairs or not in the analysis, this will be used or

ignored in the analysis. If we abstract away from the grace

time then we risk overly conservative results that decrease

usability of the safety analysis.

The second feature is typically a limited capacity of a

component used in a safety system that gets depleted

withing a fixed, constant time – so called deterministic

failure. This can occur in many situations, such as batteries

powering a safety system or, as in this case, a back-up

water reservoir that can supply a limited amount of

coolant. The water tank of the back-up cooling system will

be depleted after a fixed time. This will cause the back-up

cooling system to fail, irrespective of the failure of the

pump.

This is again a failure mode that can be pre-

programmed in the knowledge base. An analyst needs only

to specify the fixed failure time for the water tank. This

feature cannot be considered in a standard fault tree

analysis, but for instance the I&AB method can use it (in

an approximative way). Therefore, once the model is

completed, it is up to the analyst to select which features

should be considered in the analysis. This choice does not

involve any modeling effort. One simply selects which

features shall be included in the analyzed model.

This choice naturally influences the computational cost

of the analysis. In a general case, including repairs would

require transient analysis of the underlying Markov

process. Approximations of the I&AB method avoid the

state space explosion and yield calculation times

comparable to those of a static fault tree analysis

(Bouissou et al. (2020)).

6. Non-Repairable Mission System

Previous sections illustrated flexibility of analysis on

systems where accounting for repairs increases precision

of analysis. Here we explore systems that are non-

repairable by design, such as aerospace systems on a

mission. One of the techniques to increase reliability of

these systems is to add cold stand-by redundancies.

Typical probabilistic analyses of such systems rely on

fault trees. However, fault trees can hardly model phased

mission systems, and can be overly conservative when it

comes to modeling cold redundancies.

Here is a simple example: an airplane with an engine

and propeller on each wing (Fig. 8) needs the two engines

to work at full power during take-off and beginning of

ascent. After, say, five minutes of ascent, it can fly with

only one engine. The fuel is stored in the wings. Normally,

each engine is supplied by the tank situated on the same

wing. But in case of fuel shortage (because of a human

error in the filling procedure, or a leak), the pilot can

reconfigure the fuel circuits to supply both engines by a

single tank. This reconfiguration can fail. The failure rate

associated to tanks failures is supposed to be higher in the

Flexibility of Analysis Through Knowledge Bases 7

ascent phase than in the flight phase: most failures are due

to events that happened before or during take-off.

Figure 8. Twin-engine airplane

Even for this simple example, fault tree analysis is not

a usable method. The minimal requirements and failure

rates differ between the two phases, which means that two

fault trees would be needed. But they cannot be treated

independently. A correct probability assessment must take

into account the dependency between the phases. If a tank

is emptied during ascent, this must be remembered to

initialize the model of the flight phase.

A natural modeling formalism for this case are Boolean

logic Driven Markov Processes (BDMPs) by Bouissou and

Bon (2003). It extends the fault tree formalism by carefully

selected features that, on one hand, make modeling very

close to well-known fault trees, allow the analysis to select

the most efficient method given the features used, but

cover a large set of dynamic features on the other hand. In

fact, examples from previous sections could be also

modeled as BDMPs.

The prominent BDMP feature used in this section is a

trigger. It expresses cold stand-by dependencies in the

model. The secondary back-up system is started only when

the primary system fails. If failures of both systems are

modeled by gates in a BDMP then we say that the gate for

the primary system triggers the gate of the secondary

system and depict it by a dashed red line.

The BDMP shown in Figure 9 and commented

hereafter is a straightforward solution to this modeling

problem. If the length of phases is represented as

exponentially distributed, the model is Markovian and it

can be processed with very quick and precise Markov

analysis tools. In order to take into account phases with a

fixed time, the only change to do in the model is an option

in the clocks representing the phases. But then, a Monte

Carlo simulation is needed to solve the model.

The clocks represent phases. Initially the "ascent"

phase is active (considered as true in the logical structure),

and thanks to the trigger going from this phase to the

"flight" phase, when the first phase ends, the second one

immediately starts. The two lower triggers are there to

trigger on demand failures that can happen when a

reconfiguration of the fuel path is needed. The leaves

"tank1_empty" and "tank2_empty" are of the type SF

(standby failure); they have a higher failure rate as long as

the "ascent" phase is active, thanks to the triggers coming

from the "ascent" phase. Hence, this BDMP accurately

represents all the hypotheses on the airplane mission.

Figure 9. A BDMP corresponding to the safety analysis case of

an airplane mission.

The analyst can flexibly select between a standard fault

tree analysis of this model (e.g., for a qualitative

evaluation), a Markovian analysis which approximates the

fixed mission times by an exponential distribution, or a

Monte Carlo simulation of the complete system model.

The model itself does not have to be updated for these

analyses. The analyst chooses corresponding rule groups at

the moment of defining or starting the analysis.

As in the Spent Fuel Pool case, also here will the

choice of modeling features influence calculation costs.

Efficiency of the Markovian analysis will substantially

depend on selected approximations. A transient analysis of

the underlying model might not scale beyond ca 300 basic

events. Applicability of approximate methods depends on

the model characteristics, such as reliability of the system

(low failure rates, high repair rates). For certain classes of

systems, one can hope that results sufficiently close to the

exact values might be obtained even for larger models.

Monte Carlo simulations are most flexible as they do not

restrict the distributions of time intervals between events.

The drawback might be longer simulation times, especially

for reliable systems with rare events.

7. Conclusions

This paper illustrates the flexibility that a system model

based on a Figaro knowledge base gives us for its

dependability analyses. Knowledge bases can

simultaneously capture multiple system features, such as

repairs including complex repair strategies, stand-by

dependencies, deterministic system development,

production levels, and mission phases. An analyst who

UE_1UE_1

AND

crash_during_ascentcrash_during_ascent

OR

crashcrash

ascentascent
OR

loss_of_any_engineloss_of_any_engine

!

engine1engine1

!

engine2engine2

AND

crash_during_flightcrash_during_flight

flightflight
AND

loss_of_both_enginesloss_of_both_engines

OR

engine1_lostengine1_lost

OR

engine2_lostengine2_lost

AND

no_fuel_for_engine1no_fuel_for_engine1

SF !

tank1_emptytank1_empty

SF !

tank2_emptytank2_empty

I !

switch1to2_failureswitch1to2_failure

OR

backup_failure1backup_failure1

AND

no_fuel_for_engine2no_fuel_for_engine2

I !

switch2to1_failureswitch2to1_failure

OR

backup_failure2backup_failure2

8 Ola Bäckström and Marc Bouissou and Pavel Krcal and Pengbo Wang

enters the model on the level of a system description does

not have to keep a certain type of analysis in mind. Only

when a system is defined, the analyst selects which of the

model features shall be considered by the analysis. This

also determines the analysis tools that have the capability

to produce required results.

References

Arnold A., Griffault A., Point G. and Rauzy A.. The AltaRica
formalism for describing concurrent systems. Fundam. Inf.
40, issue 2-3, pages 109-124, IOS Press, 2000.

Bäckström, O., Bouissou, M., Gamble, R., Krcal, P., Sörman, J.
and Wang, W. (2018). Introduction and Demonstration of the
I&AB Quantification Method as Implemented with
RiskSpectrum PSA, Proc. of PSAM’14.

Bittner B., Bozzano M., Cavada R., Cimatti A., Gario M.,
Griggio A., Mattarei C., Micheli A., and Zampedri G.
(2016). The xSAP Safety Analysis Platform. Proc. of
TACAS’16.

Bouissou M., Bon J. L. (2003). A new formalism that combines
advantages of fault-trees and Markov models: Boolean logic
driven Markov processes. Reliability Engineering & System
Safety 82, 149-163.

Bouissou M., Bouhadana H., Bannelier M., Villatte N. (1991).
Knowledge modeling and reliability processing: presentation
of the Figaro language and associated tools. Proc. of
SAFECOMP’91.

Bouissou M., Chraibi H., Muffat S. (2004). Utilisation de la
Simulation de Monte Carlo pour la résolution d’un benchmark
(MINIPLANT). 14ème congrès de fiabilité et maintenabilité,
Bourges, (France).

Bouissou, M. and Hernu, O. (2016). Boolean approximation for
calculating the reliability of a very large repairable system
with dependencies among components, Proc. of ESREL 2016,
Glasgow, UK.

Bouissou, M. (2018). Extensions of the I&AB method for the
reliability assessment of the spent fuel pool of EPR, Proc. of
ESREL 2018, Trondheim, Norway.

Bouissou, M., Humbert, S. and Houdebine, J. (2019), Reference
manual for the FIGARO probabilistic modelling language
(Version-E), EDF.

Bouissou, M., Khan, S., Katoen J.-P., and Krcal P. (2020)
Various Ways to Quantify BDMPs. In Proc. of MARS’20.

Bozzano, M., Villafiorita, A. (2006). The FSAP/NuSMV-SA
safety analysis platform. International Journal on Software
Tools for Technology Transfer (STTT) 9, 5-24.

Flori, A., Flori, S. and Houdebine, J. (2018). Experiment on
Exchanges between Models in Systems Engineering and
Models in Dependability / Cyber-security for Dynamic
Systems. (in French) Proc. of Congrès Lambda Mu 21.

Güdemann M., Ortmeier F. (2010). A framework for qualitative
and quantitative model-based safety analysis. In Proc of
HASE 2010.

Kabir S., Walker M., and Papadopoulos Y. (2018). Dynamic
system safety analysis in HiP-HOPS with Petri Nets and
Bayesian Networks. Safety Science 105:55-70.

Lipaczewski M., Ortmeier F., Prosvirnova T., Rauzy A., and
Struck S. (2015). Comparison of modelling formalisms for
Safety Analyses: SAML and AltaRica, Reliability
Engineering & System Safety 140, 191-199.

Olsson, A. (2018). Leaving mission times backstage and taking
repair into account in long term scenarios, Proc. of PSAM
14.

Papadopoulos Y., McDermid J. (1999). Hierarchically performed
hazard origin and propagation studies. In Proc. of
SAFECOMP.

Papadopoulos Y, Maruhn M (2001). Model-based automated
synthesis of fault trees from Matlab-Simulink models. Proc.
of International Conference on Dependable Systems and
Networks (DSN’01).

Point G., Rauzy A. (1999). AltaRica: Constraint Automata as a
Description Language. Journal Européendes Systémes
Automatisés 33(8–9):1033–52.

Visual Figaro (2021). The package contains sample knowledge
bases. https://sourceforge.net/projects/visualfigaro/.

https://sourceforge.net/projects/visualfigaro/

