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Abstract: Model-based safety assessment brings dependability modeling closer to the system design 

and allow for automated analysis of high-level models. RiskSpectrum ModelBuilder uses an object-

oriented modeling language with elements of declarative programming called Figaro for describing the 

dependability logic of component types. We demonstrate how the Figaro language, and the concept of 

knowledge bases empowers dependability experts to create generic component descriptions that can be 

used in model-based safety assessment of various system types. In particular, we focus on the 

possibilities to encode complex control logic. One can create a single component type that can be 

utilized in systems with different topologies or in systems that contain different components. 

 

 

1.  INTRODUCTION 
 

A goal of model-based safety assessment is to bring dependability modeling closer to the system design 

and allow for automated analysis of these high-level models. A system design description consists of 

system components and their relations. In many applications, a dependability model can copy the 

system design very closely. The dependability logic can be specified in a generic form per component 

type, applicable to all instances of this component type. A model might require a limited amount of 

specific, irregular, dependability information, such as relations or conditions affecting failures and their 

propagation. To prepare a model for an analysis, it remains to specify a configuration and 

safety/availability/production criteria. 

 

RiskSpectrum ModelBuilder is a tool for model-based safety assessment based on the KB3 software, 

which has been developed by Électricité de France (EDF) since 1995 and grew into a platform proven 

by industrial use. Safety systems of a nuclear power plant can be modeled in KB3 so that their 

Probabilistic Safety Assessment (PSA) fault trees can be automatically generated from the KB3 model. 

 

The modeling language for describing the dependability logic of component types used in 

RiskSpectrum ModelBuilder is called Figaro [5] and has evolved and matured over decades. It is an 

object-oriented modeling language with elements of declarative programming. It allows specifying 

interactions between components in the first-order logic. By this, a general description applies to all 

valid system topologies. The expressive power of this language has been demonstrated by numerous 

applications especially in the nuclear safety domain.  

 

In this paper, we demonstrate how the Figaro language, and the concept of knowledge bases empowers 

dependability experts. It allows them to formalize and codify dependability knowledge for a specific 

domain or application type. It can be then used by non-experts in the form of a component library to 

build any model from this domain. The knowledge base can be systematically updated or extended 

whenever there is a need.  

 

We focus on the possibilities to encode complex control logic in the component definitions. In general, 

one can specify any logic that can be described by a finite state machine or by a flow-chart. 

Communication between components, interactions between the state of a component and the state of 

related components and interleaving between stochastic events and control actions necessary for the 

control are also discussed.  
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We exemplify the power of Figaro on Digital I&C for Nuclear Power Plants, where the ModelBuilder 

approach allows to relatively easily extend the modeling to include intelligent voting. Automatic fault 

tree generation avoids the tedious and error-prone process of manual modeling for this complicated 

feature. We also develop main features of a control unit for a heterogenous power generating station 

scheduling different power sources to match the demand. As the last example, we consider a control of 

a Spent Fuel Pool that takes the water level in the pool into account. The latter two applications utilize 

Monte Carlo simulations for the analysis. 

 

Apart from the RiskSpectrum ModelBuilder/KB3 and Figaro, there are several other established Model-

Based Safety Assessment (MBSA) frameworks which offer a high-level modeling approach for 

dependability studies. AltaRica [1, 18] supports hierarchical modeling of components and their 

interaction. Models ultimately translate to guarded transition systems with a mathematical semantics 

and several analysis tools. Another MBSA framework, Safety Analysis Modeling Language (SAML) 

has been proposed by [13]. Hierarchically Performed Hazard Origin and Propagation Studies (Hip-

HOPS) [16] equips individual components with failure modes and mechanisms of their propagation. 

This allows for standard Fault Tree Analysis [17] and Failure Modes and Effects Analysis. This 

formalism offers also dynamic analyses, e.g., based on Petri Nets [14]. Formal Safety Analysis Platform 

(FSAP) [12] utilizes symbolic model checking to perform safety analysis of a system model. This 

platform has been succeeded by xSAP [4] which extends it by providing general libraries for modeling 

and additional tools for safety analysis. 

 

2.  PRELIMINARIES 

 
This section presents the modeling language Figaro and the concept of knowledge bases. Figaro is a 

text-based, object-oriented general-purpose modeling language for dependability analyses. Its 

semantics is a timed state-transition system with both deterministic and stochastic transitions. The 

language offers modelers great support to abstract away from low-level transition systems and think in 

terms of components and their interactions. Components can be defined as classes in a standard class-

hierarchy used in object-oriented languages. A detailed description of all features can be found in [10]. 

Figaro can serve as a general language to describe standard formalisms used in dependability studies, 

such as Fault Trees, Markov Processes, Generalized Stochastic Petri Nets, Digraphs and Reliability 

Block Diagrams. It can also be used to build customized modeling libraries for various types of systems, 

such as thermohydraulic, electric, or production systems. 

 

Knowledge bases consist of component descriptions (class definitions in the Figaro language) and a 

graphical part that turns components into graphical icons that enable graphical building of system 

models, their linking through graphical links or by setting instance specific properties and visualization 

of the component state. Defining a model then consists of selecting correct components, placing them 

on a canvas, linking them, and setting instance specific data. This also includes definitions of system 

configurations – initial states, relevant failure modes, and success criteria.  

 

Models can be analyzed in various ways, depending on the types of behaviors encoded in the knowledge 

base [3, 11]. Failure occurrences that propagate through the system in a combinatorial way can be used 

to generate fault trees. More dynamic behavior patterns give rise to Markov Processes that can be 

analyzed by, e.g., Monte Carlo simulations. The structure of the ModelBuilder platform is depicted in 

Figure 1. 

 

In Figaro libraries, classes may have many specific features that go beyond a combinatorial 

characterization of the failure behavior. For example: 

• Repairs, including complex repair strategies with shared resources and imperfect repairs. 

• Stand-by dependencies and multistage reconfiguration strategies. 

• Deterministic behavior: clocks, grace periods, deterministic timing of failures. 

• Production / processing / throughput 
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Figure 1. A schematic illustration of the ModelBuilder platform. 

 
Our focus here is on another aspect of system modeling that can be described using Figaro, namely 

plant control logic. It is often necessary to capture decision schemes processing input and measurements 

and actuating plant components. Figaro offers powerful constructs that provide a reliability expert with 

a great flexibility to include control logic in a knowledge base. 

 

Figaro classes describe component behavior with the following constructs: 

• Interfaces: related components 

• Occurrence rules: events that can occur stochastically and influence the component state 

• Interaction rules: propagation of state changes among components 

 

Interfaces define relationships between components by specifications in the Figaro classes. The 

specifications define a kind which provides the name of the related class but are otherwise flexible; The 

knowledge base does not have to specify the number of related components of this kind. The number 

can then be from zero to many. The interfaces are inherited between Figaro classes as other component 

properties. 

 

Occurrence rules capture stochastic events in the model. An occurrence is conditioned by a certain state 

and can occur randomly according to a defined distribution or dependent on time the system has been 

in that state. An occurrence has consequences on the state of the component described by actions and 

by firing of transitions. Figaro supports various standard time distributions, including also a fixed period 

between events. Events can be observed by other components and update the state of the system. 

 

Interaction rules are a declarative way to model communication, discrete control logic, and changes to 

the component. Various control logic corresponding to a flow chart, or a state machine structure can be 

implemented by imperative iteration of condition rules in a specified order. In an interaction rule of a 

component, it is possible to extract information from, as well as updating state of other components that 

are linked through interfaces. The rules can perform first order quantification and iterate over related 

components extracting required information. In general, the interaction rules are executed in rounds 

until a fixed-point is reached. However, they can be defined in different steps, that decide the grouping 

and sequential ordering of the execution of the rules. The order of the steps is specified in the steps 

order section of the knowledge base. Interaction rules of the same step are run in top-down order. 

Interaction rules are executed at any occurrence of an event.  
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3.  DIGITAL I&C: INTELLIGENT VOTING 
 

Safety systems of a nuclear power plant can be modeled using knowledge bases for thermohydraulic, 

electric and Instrumentation&Control (I&C) parts of the design. Fault trees can be automatically 

generated from high-level graphical models closely corresponding to Piping and Instrumentation 

Diagrams (P&IDs) or Single-Line Diagrams. This section presents control logic modeling in such setup, 

aiming at fault tree analysis. 

 

Digital I&C systems belong to common components in modernizations and building of new reactors, 

regardless of type. There are challenges with representation of such systems in reliability assessment, 

both in terms of hardware and software. In this paper we focus on one of the positive aspects of digital 

I&C, “intelligent voting”. The digital I&C enables management of detected faulty input signals with a 

possibility to respond according to the detected faulty input. Such “intelligence” can be difficult to 

model fully in PSA and simplifications are often made.  

 

An example of intelligent voting is a system with the 2-out-of-4 logic in the initial state for detection of 

low water level. Now assume that a failure of one of the transmitters is detected (signal out of bound, 

for example). Furthermore, let us assume that the faulty signal is triggering a high water level indication. 

In this case the system would, without intelligent voting, become a 2-out-of-3 system. With an 

intelligent voting, the system designer could say that the system should switch into a 1-out-of-3 system 

in case of a detected fault. The fault tree in Figure 2 is indicating how this can be modelled. Note that 

only detected failure of detector 1 is represented. 

 

Figure 2. A fault tree for a switch from 2-out-of-4 to 1-out-of-three in an intelligent voting 

system. 
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The configuration, the type of failure modes and the system behavior triggered by a detected failure that 

you may like to introduce in the model of digital I&C may differ from system to system, and hence it 

could be interesting to have a knowledge base that would allow for your own definition of how the 

system should behave in different types of situations. The knowledge base fragment in Figure 3 is based 

on the example above. The first interaction rule covers the situation with no detectable failure. The 

voting logic can be specified in the model, individually for each voting system. If we set the value of 

the attribute detectors_requires_all_OK to be equal to two, then we obtain 2-out-of-4 logic for four 

detectors. The condition in the second interaction rule is true if and only if exactly one detector has a 

detectable failure. In this case, the voting logic is determined by the attribute 

detectors_required_one_failed. If we set it to one, then the resulting logic will be 1-out-of-3. A fault 

tree generated from this knowledge base would be logically equivalent to the fault tree in Figure 2. 

Analogically, one can define interaction rules for higher numbers of detectable failures in the voting 

system. These interaction rules can be also easily extended to cover other types of failure modes or 

other types of intelligent voting algorithms and hence such a knowledge base provides an extended 

flexibility to the modelling of Digital I&C systems. 

 

Figure 3. Example interaction rules for an intelligent voting system. 

 
 

4.  SPENT FUEL POOL: A HYBRID ANALYSIS 
 

A Spent Fuel Pool (SFP), depicted in Figure 4, contains active systems for cooling the stored fuel which 

has a relatively low decay heat. In case of a failure of the cooling systems, a radioactive release does 

not occur early, i.e., within 24 or 48 hours. The time until the water starts boiling is approximately one 

week. Once boiling has started it will take approximately three more weeks before the fuel elements are 

uncovered. Within this time, cooling system components can be repaired, fail again, or other 

components can fail later during the accident sequence.  

 

A realistic safety assessment of a spent fuel pool using static fault trees is challenging. Dynamic 

methods based on a minimal cut set list might be applied to reduce the conservatism of the static 

approach [15]. Another alternative would be to resort to Monte Carlo simulations which can take the 

dynamics of the physical phenomenon and its interaction with the plant into account. This includes also 

an interaction between the discrete control logic and physical phenomena that occur in the plant. We 

show how this can be implemented in a ModelBuilder knowledge base on an example of the water level 

and temperature control. 
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Figure 4. A scheme of a spent fuel pool. 

 

 
 

 

The spent fuel pool cooling system (SF) pumps water from the top of the pool, cools it in heat 

exchangers and feeds it back to the pool. If the water temperature reaches a certain level (Tc), the SFP 

system stops functioning. To simplify the example, we set Tc equal to the boiling temperature. When 

the water temperature reaches Tc, then the Reactor Water system (RW) is started. It feeds cold water to 

the pool until the temperature drops below a certain level Tn and the water level in the pool is restored 

(in case some water has already boiled off). If the cooling fails completely, then the water boils off and 

eventually the water level drops so that the fuel is uncovered. In this situation, we have reached a state 

where the undesired consequence occurs. The control logic of the RW system is depicted in Figure 5. 

 

Modeling patterns in Figaro. We illustrate modeling of the interactions between the water temperature, 

the water level, and the plant, where a control unit decides when the RW system is started or stopped. 

The water level and temperature are also affected by component failures and repairs. Evolution of the 

plant is determined by occurrence of events. We add an object that issues a clock tick event which 

occurs repeatedly with a fixed constant period. By this, we discretize time in the Figaro model [7]. The 

state of continuous variables (water level, water temperature) is then calculated at each event (either a 

stochastic failure or repair, or a clock tick) from the state at the previous event, plant state, and the 

amount of time passed since the previous update. Each event also leads to an update of the discrete 

variables by the means of interaction rules. This gives the control unit a possibility to react on changed 

values of continuous variables. 

 

Figure 6 shows the rule for an update of the pool temperature and water level. If we set the date of the 

last update, which is stored in the last_event_date variable, to the current date, obtained from 

CURRENT_DATE, after executing the temperature and water level update then we execute the update 

only once after each new event. 
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Figure 5. A generic flow chart describing the control logic of the Reactor Water system. 

 
 

Figure 6. Interaction rules for updating the spent fuel pool temperature and level after each 

event. Setting the flag water_boiling as the last rule remembers if the water has been boiling for 

the whole time interval. 
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The plant controller can then react upon the change in the temperature and start additional cooling – the 

Reactor Water system – when the temperature rises above a certain level. By this, the heat removal 

capacity of the plant cooling and the water level increase. When the temperature drops under a certain 

level and the water is refilled then the RW system can be switched off again. The controller sends the 

corresponding signal to the RW system. Figure 7 shows how switching the RW system on and off is 

implemented by setting the state of the RW system to ‘required’ or to ‘stand-by’. If RW succeeds to 

start, then its state changes to RUNNING. This is defined in the interaction rules of the RW system. If 

the plant is back to a normal state then the controller switches off the RW system. 

 

An analysis of this spent fuel pool model based on Monte Carlo simulations can estimate the frequency 

of uncovering the fuel for scenarios defined by specific plant configurations, reliability data, repair 

strategies, etc. This type of analysis considers the grace delay between the cooling failure and the 

consequence in a way that is much more realistic than a static analysis with a fixed mission time. It 

includes additional scenarios also when compared to dynamic methods considering repairs and grace 

delays, such as Initiators and All Barriers [2, 8, 9]. The price to pay is the analysis time required for 

simulations and the lack of exhaustiveness, which is offered by dynamic methods based on minimal cut 

sets. 

 

Figure 7. Interaction rules of a controller that requests a start of the RW system when the 

temperature reaches the critical level.  

 
 

5.  HETEROGENOUS POWER PRODUCTION: PRODUCTION PRIORITIES 
 

This section presents modelling of the control logic of a heterogenous power production system with 

different sources of electricity supply. We show how complex control structures can be encoded in a 

generic knowledge base written in the Figaro language. Models using this knowledge base can be 

analyzed by Monte Carlo simulations in order to make optimal design decisions for such power plants.  

 

The system to model consists of the components presented in Figure 8: 

• a consumer representing the electricity demand function that varies over time 

• a set of renewables, i.e., wind turbines and solar power plants producing power depending on 

weather 

• a set of backup gas turbines 

• a power station controlling the production and connecting all power production systems 

 

The power station aims to ensure sufficient energy production so that it can meet the demand at minimal 

costs (minimizing financial costs, CO2 production, etc.). Many design decisions can be taken to achieve 

this; How to minimize starting and running gas turbine backups? What mean repair times and priorities 

between different components are allowed regarding availability versus repair costs?  
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Figure 8: Power production system example 

 

 

For simplicity, we show a limited functionality in this example. It is also possible to include different 

energy storages into the model. This can be implemented using time discretization, similar to the Spent 

Fuel Pool example, i.e., charging at overproduction and supply when needed. This part aims to present 

how a control flow can be implemented. Figure 9 captures the control logic of the power station in a 

flow chart. 

 

Figure 9: A generic flow chart of control logic of the power station 

 
Dynamics of the whole system are determined by changing weather conditions and consumer demand, 

as well as occurrences of failures and their repairs. At each new event, a new consumer demand is given, 

and a supply level from all wind- and solar production systems depending on weather and a possible 
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failure of components. The power station uses this information to control the energy production from 

the gas turbines.  

 

We must consider interleaving of stochastic events, such as failures, communication between 

components, and discrete control decisions. The decision logic in the state “CHECK TOTAL 

PRODUCTION” in Figure 9 can be implemented as a series of interaction rules. First, calculating the 

variable current_output is essential for determining the current supply, see Figure 10. This is done by 

iterating all related linked backup turbines using the FOR_ALL statement. 

 

Figure 10: Summing up of current output from all existing electricity suppliers 

 
 

The value of the current output is compared to the demand to determine the change of gas turbine 

production. Increasing the production is represented by the interaction rules station0 and station1 in 

Figure 12. The step order specified in this knowledge base lets the inp_renewables_gas step in Figure 

10 be executed before the request/decrease_backups steps in Figure 11 and the step station0 before 

station1. This ensures that the capacity of running backup turbines is used before requesting a new one 

to start up.  

 

Figure 11: The logic for decision on whether to request a start-up of a backup gas turbine 

 
 

 

When requesting a change, the station rules in Figure 11 also set the state of linked backup gas 

turbines by using state(x). These turbine states are in turn used in the gas turbine class, where its 

output is set accordingly, respecting their own properties and resources, see Figure 12. 
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Figure 12: Code snippet of gas turbine class with the interactions run in conjunction with the 

rules changing the instance's state: 

 
 

 

The different objects also have different stochastic events depending on the state they are in, represented 

by occurrences. Figure 13 shows that a failure on demand of a gas turbine in the state required can 

occur. Analogically, a failure in operation of any power producing unit can occur. All these stochastic 

events trigger a new evaluation of interaction rules, i.e., starting from top in Figure 9, following the step 

order until a steady state of the system is reached, which also determines the power production level.  

 

Figure 13: Occurrences for sub classes to prod_system 
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7.  CONCLUSION 
 

Model-based safety assessment encapsulates dependability expert knowledge and provides a 

dependability or system engineer with a high-level tool to build and analyze a system dependability 

model. In case of RiskSpectrum ModelBuilder (KB3), this tool is a knowledge base offering a list of 

component types defined by a dependability expert in the modeling language Figaro. A faithful 

modeling of complex systems might also require including control logic in a knowledge base.  We have 

shown on several examples that Figaro presents a flexible and powerful way of describing control logic 

and its interaction with the plant and the environment. 
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